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Abstract 

Diet energy density is a major factor in broiler production costs, but metabolizable energy system 

has limitations in accurately predicting broiler performance due to its low sensitivity to actual 

metabolism. The productive energy (i.e., Arkansas Net Energy) system, which measures 

productive energy, provides a more accurate assessment of energy utilization, particularly under 

conditions affected by gut health, like enteritis and coccidiosis. This article highlights 

opportunities for assessing the effects of enteritis and coccidiosis on poultry energetics, 

evaluating dietary interventions on gut health, improving precision nutrition, and supporting 

One Health strategies in antibiotic-free production systems. 
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Introduction 

Feed costs account for approximately 65% of 

total broiler production costs, with the energy 

density of the feed representing the most 

considerable portion of the formula cost. For the 

last six decades, metabolizable energy (ME) has 

been the standard method to quantify the energy 

value of the feed and to formulate poultry diets 

(Lopez and Leeson, 2008). However, ME has 

been shown to be weakly correlated with 

performance (Hill and Anderson, 1958) and to be 

primarily influenced by nutrient digestibility (Wu 

et al., 2020). As a result, the sensitivity of ME to 

actual bird metabolism is limited (Sibbald et al., 

1960), making it unsuccessful in predicting the 

feed intake and growth rate of broilers, 

particularly under commercial conditions (van 

der Klis and Jansman, 2019).  

Enteritis, often resulting from bacterial 

infections and dietary anti-nutritional factors, 

and coccidiosis, caused by Eimeria spp, disrupt 

digestive processes and impair nutrient 

absorption, greatly impacting broiler performance 

and health (Martinez, 2022). However, their 

effects are associated with inflammatory 

processes that reduce feed intake (Lu et al., 2014; 

Martinez et al., 2023a). These conditions can shift 

the growth curve and delay the age at which birds 

reach market weight (Martinez et al., 2023a, b). 

For broilers to produce meat, they need to gain 

body protein, which results from a positive 

balance between body protein synthesis and 

breakdown rates as constituents of protein 

turnover (Maharjan et al., 2020). The 

inflammatory response triggers an increase in the 

body protein breakdown rate (i.e., catabolism; 

Klasing and Austic, 1984) and reduces the 

synthesis rate of muscle protein to support the 

production of acute-phase proteins (Peinado-

Izaguerri et al., 2024), leading to decreased body 
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protein accretion. Indeed, both enteritis 

(Pastorelli et al., 2012) and coccidiosis (Moraes 

et al., 2019) have been reported to affect body 

weight gain by increasing the maintenance 

expenditure of nutrients. 

Despite the lack of sensitivity of ME to actual 

metabolism, the impact of coccidiosis on broiler 

diet ME has been reported (Teeter et al., 2008a, 

b). However, an energy system responsive to 

actual metabolism and protein accretion is 

needed to accurately assess the full impact of 

intestinal health on poultry energetics.  

Quantifying the influence of gut health on 

poultry energetics 

Recently, a new energy system (Arkansas Net 

Energy; Hilton, 2020) has been developed to 

more accurately account for the energy use by 

production birds. Such a system is defined as 

productive energy (PE) (Maharjan et al., 2021b) 

as it accounts for the energy the birds use to 

produce meat, in the case of broilers and 

turkeys, or eggs, for broiler breeders and 

commercial layers. In the case of broilers, this 

PE system is based on direct measurements of 

body energy retention (net energy for gain; NEg) 

and the maintenance energy expenditure (i.e., 

fasting heat production = net energy for 

maintenance; NEm). NEg is determined with 

Dual-Energy X-ray absorptiometry (DEXA) and 

NEm via indirect calorimetry chambers, both 

expressed per unit of feed intake. Additionally, 

DEXA determinations of broiler processing 

weights, i.e., breast, tenderloins, wings, and leg 

quarters (Martinez et al., 2022a, b, c), allow 

dynamic economic evaluations. Since PE 

measures the actual energy output (PE = NEm + 

NEm), it is sensitive to factors influencing 

digestion, absorption, actual bird metabolism, 

protein accretion, and overall performance 

(Suesuttajit et al., 2022). 

The relevance of an energy system sensitive 

to changes in body composition and heat 

production has been reported. A recent meta-

analysis reported that changes in body 

composition are associated with variations in the 

conformation of the broiler carcass (i.e., breast-

to-leg ratio), which influences its market value 

(Martinez et al., 2022d). Moreover, body 

composition has been shown to influence heat 

production, associated with changes in protein 

turnover (Martinez et al., 2022e). Notably, higher 

body protein gain correlates with improved 

growth rates and lower feed conversion ratio 

(Maharjan et al., 2020, 2021a). Therefore, the 

high sensitivity of PE to performance (Suesuttajit 

et al., 2022) is well justified.  

Conclusion 

Since ME lacks sensitivity to actual metabolism, 

it underestimates the impact of enteritis and 

coccidiosis on energy metabolism. Consequently, 

the effects of coccidiosis on energy metabolism 

are likely more significant than previously 

reported. PE offers a more accurate approach to 

assessing the impact of gut health and dietary 

interventions on energy metabolism and their 

economic implications. PE research will allow 

industry nutritionists and veterinarians to 

develop management strategies toward precision 

nutrition, adapt production practices to varying 

conditions (Riboty et al., 2024a, b), and 

implement more dynamic metaphylactic-type 

feed additive interventions (Martinez et al., 2020) 

in antibiotic-free production considering 

environmental conditions and field risk factors. 

This approach would help minimize the likelihood 

of clinical or subclinical enteric processes, 

ultimately supporting One Health initiatives. 
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