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Abstract

Cryopreservation refers to freezing cells or tissues at extremely low temperatures, allowing them to be

stored for extended periods while maintaining viability. Cryopreserved bull semen has become an essential

tool in cattle breeding programs and commercial cattle production systems. This review provides a de-

tailed analysis of the current methods and challenges in preserving bull sperm using cryopreservation. We

explore the effects of cryopreservation on sperm cells, the role of different cryoprotectants, as well as the

progress made in the analysis of bull semen. It also highlights the impact of the freezing process on sperm

morphology and functionality, emphasizing the importance of optimizing cryopreservation techniques to

maintain sperm fertility and viability. The article underscores the significance of cryopreservation technol-

ogy in cattle genetics and breeding and suggests future research to enhance cryopreservation techniques.
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Introduction

The cattle industry relies heavily on cryopreservation technology
today. Without cryopreservation, it would be challenging to pre-
serve and distribute high-quality bovine genetics from elite bulls.
Every time a valuable bull died or became inactive, its genetics
would be lost. This would lead to a steady decline and loss of ge-
netic gains in key economic traits made over long-term breeding
programs for high milk production, carcass quality, reproductive
performance, and health (Moore and Hasler, 2017). Widespread
use of cryopreserved semen from top bulls has enabled breeders
to achieve great hybrid vigor and maximize productivity. The
absence of cryopreservation would restrict the gene pool available
for breeding, resulting in higher levels of inbreeding and less pro-
ductive cattle over time (Menchaca, 2023). Moreover, distribut-
ing bull semen to remote or artificial insemination centers would
be more challenging and expensive. It would involve maintaining
live bulls and physically transporting them for breeding, leading
to higher costs and slower dissemination of superior genetics. On
the other hand, using live bulls for natural breeding raises the
risk of spreading infectious diseases like trichomoniasis. Cryop-
reservation mitigates this risk and facilitates a safer exchange of
genetic material (Nicholas, 1996; Bailey et al., 2003; Lamb et al.,
2016).

Over the past few decades, the field of cryopreservation, par-
ticularly concerning bull sperm, has seen remarkable advance-
ments. This progress is evidenced by extensive research and in-
novations in the techniques and understanding of cryopreserva-
tion and its impacts on sperm cells. The cryopreservation of bull
sperm has evolved significantly, from the initial discovery of the
positive effects of simple cryo-protectant agents in the 1940s by
Polge et al. (1949) on animal sperm cryoprotection to the devel-
opment of advanced methodologies that enhance the post-thaw
viability and fertility of bull semen. These advancements have

greatly influenced cattle production and genetic propagation.
However, despite these developments, challenges such as vari-
able post-thaw sperm viability and variations in fertility among
breeding bulls still persist, prompting ongoing research in this
area (Rodriguez-Martinez, 2012; Ugur et al., 2019). The sub-
sequent sections will delve into the recent understanding of the
effects of cryopreservation on bull sperm, the various methods of
cryopreservation and evaluation, and potential future directions
for improving these techniques.

Effect of cryopreservation on sperm cells

Like all plasma membranes, the sperm cell’s plasma membrane
is composed of lipids and proteins (Figure 1). Komarek et al.
(1964) analyzed the lipid composition of bull sperm and semi-
nal plasma samples separately using thin-layer chromatography
and reported that the total lipid content of bovine spermato-
zoa and seminal plasma accounts for 12.0% and 1.35% of the
total dry weight, respectively. The cholesterol content in neu-
tral lipids of sperm and seminal plasma from bulls were 23.3%
and 18.8%, respectively (Jain and Anand, 1976). Sperm plasma
membrane lipids exist mainly as phospholipids and cholesterol.
The phospholipids are organized into a dynamic bilayer, where
each molecule consists of a phosphate head and two fatty acyl
tails. The ratio of polyunsaturated fatty acids to saturated fatty
acids in bull sperm (3.5) is greater than in human (1.0) and ram
sperm (2.5) (Poulos et al., 1973).

Cholesterol molecules, with their four hydrophobic carbon
rings and a carbon side chain, nestle into the membrane, filling
any inconsistencies caused by the varying lengths and saturation
levels of the fatty acyl chains (Figure 1). This function of choles-
terol stabilizes the membrane structure, particularly at body
temperature. Amounts of cholesterol in sperm membranes may
determine the cryotolerance of the cell because higher levels of
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Figure 1: Sperm plasma membrane composition (Created with BioRender.com).

cholesterol result in more rigid and cohesive sperm membranes.
Bull sperm contain lower levels of cholesterol compared to hu-
man sperm (0.89 µM/109 sperm versus 1.438 µM/109 sperm,
respectively) (Darin-Bennett and White, 1977). Although fresh
sperm had slight lipid peroxidation, cryopreserved sperm suffer
from higher lipid peroxidation (Bansal and Bilaspuri, 2010; Lone
et al., 2016). Ruminant sperm are susceptible to lipid peroxida-
tion due to their high content of polyunsaturated phospholipids
(Evans et al., 2021).

It is noteworthy that the cryotolerance of spermatozoa
plasma membranes is largely contingent upon the ratio of choles-
terol to phospholipids within these membranes. In this regard,
various species can be systematically ranked based on their
respective plasma membrane cholesterol-to-phospholipid ratios,
which, in turn, correlates with their sperm cryotolerance. This
ranking is as follows: human sperm exhibits a ratio ranging from
0.99 to 0.83, followed by rabbit at 0.88, bull with a range of 0.40
to 0.45, ram at 0.38, stallion at 0.36, rooster at 0.30, and boar,
which has a ratio between 0.20 and 0.26 (Darin-Bennett and
White, 1977; Parks and Hammerstedt, 1985; Parks et al., 1987;
Mack et al., 1986; Parks and Lynch, 1992).

During cooling, the membrane’s lipids transition from a fluid
state to a solid, gel-like state, a process known as phase transi-
tion (Amann and Pickett, 1987). Unlike a single temperature,
this transition occurs across a range of temperatures due to the
unique transition points of individual fatty acyl chains. As the
temperature decreases, the lipids cluster into ”icebergs,” caus-
ing the proteins to form aggregates within the membrane, which
significantly impairs their functionality. However, the presence
of cholesterol stabilizes the sperm plasma membrane and retains
its fluidity (Figure 2).

As the cooling continues, more lipids solidify, reducing the
fluid membrane’s proportion until the entire membrane becomes
gel-like at the lowest temperature of its transition range. At
-5°C, the extracellular solutes, and the cells, along with intracel-

lular water, remain unfrozen but are supercooled. Between -5°C
and -15°C, the supercooled intracellular water persists, while ex-
tracellular ice begins to form due to a concentration gradient,
causing intracellular water to migrate outward and freeze (Gao
and Critser, 2000). If the cooling rate is slower than -15°C, most
intracellular water will move to the extracellular space, leading
to cell dehydration and shrinkage and, ultimately, hyperosmotic
shock. Conversely, a rapid cooling rate may prevent dehydration
but can cause the formation of intracellular ice crystals (Yeste,
2016). Therefore, the ideal rate for sperm cooling and freezing
must be quick enough to prevent dehydration and shrinkage but
slow enough to avoid intracellular ice formation (Yeste, 2016).
Moreover, the cooling and freezing temperatures can disrupt
sperm ATP-dependent ion channels for potassium, sodium, mag-
nesium, and calcium, resulting in depolarization and increased
permeability of the plasma membrane and mitochondria. These
changes can trigger premature capacitation, cell death, lipid per-
oxidation in the plasma membrane, and the release of reactive
oxygen species (ROS) (Amann and Pickett, 1987). Recently, it
has been reported that cryopreservation induces alterations of
miRNA and mRNA fragment profiles of bull sperm (Shangguan
et al., 2020).

Markers for prediction of bovine sperm fertility and/or
freezability

The advancement of the cattle artificial insemination industry
heavily relies on the accurate prediction of bull frozen semen
fertility. A key determinant of bull-frozen sperm fertility is its
resilience to cryogenic damage. Traditional semen analysis meth-
ods, involving multiple steps like semen collection, processing,
freezing, and fertility trials, are often costly and time-consuming,
making them impractical for routine use. Thus, identifying reli-
able biomarkers for sperm freezability and fertility is of utmost
importance. Studying cryopreserved sperm with OMICS tools
like proteomics, transcriptomics, and metabolomics provides new
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Figure 2: Cholesterol maintains plasma membrane stability during low temperatures (Created with BioRender.com).

insight into tolerance biomarkers and molecular changes from
freezing stress. Using systems biology approaches to study cry-
oinjuries can transform sperm freezing from an empirical method
to a highly controlled procedure. This could help optimize cry-
opreservation methods.

Recent proteomic investigations have focused on identify-
ing specific biomarkers linked to the cryotolerance of bovine
sperm. Proteins such as bovine seminal ribonuclease and semi-
nal plasma protein (BSP-5) have been correlated with high se-
men freezability, while proteins including tubulins, glucose-6-
phosphate isomerase, peroxiredoxin-5, spermadhesin-1, gelsolin,
sperm equatorial segment protein 1, ATP synthase, calmodulin,
glyceraldehyde-3-phosphate dehydrogenase, and secretoglobin
family 1D have been associated with low semen freezability (Ryu
et al., 2019; Gomes et al., 2020). Other studies have identified
positive biomarkers of sperm freezability, including certain pro-
teins (VDAC2, HSP90, AKAP4), RNA transcripts (BCL2L11,
CATSPER1), metabolites (amino acids, glycolysis substrates),
and gene SNPs (Khan et al., 2021).

In another study, a genome-wide association study was per-
formed to identify SNPs and candidate genes related to var-
ious sperm abnormalities (acrosome loss, head/neck/tail de-
fects, motility) in frozen-thawed Holstein bull semen (De-
mentieva et al., 2024). Significant associations found be-
tween specific SNPs/genes and absence of acrosomes (POU6F2,
MAP3K7, TCF23, etc.), head anomalies (ORC4, GLRA3, TTK,
etc.), swollen acrosomes (LPCAT4, DPYD, bta-mir-137/2420),
wrinkled acrosomes (IGFBP3, NPY, MON2, etc.), damaged
tails/necks (SAMD5, CLSPN, SLC2A10, etc.), and sperm motil-
ity (JPH1, SNCAIP, FSCB, PSMA1). Such Results provide
insights into genetic factors and molecular mechanisms affect-
ing the morphology viability of sperm after freezing, laying the
foundation for improving cryopreservation protocols and breed-
ing strategies (Dementieva et al., 2024). Using transcriptomics,
one miRNA and bta-miR-138 showed significantly lower expres-
sion in sperm from subfertile bulls compared to highly fertile
bulls. The presence of bta-miR-138 was negatively correlated

with sperm oxygen consumption, indicating its potential role in
fertility. Three other miRNAs (bta-miR-19b, bta-miR-26a, and
bta-miR-7) also showed correlations with sperm function vari-
ables (Salas-Huetos et al., 2023).

In summary, the recent advancements in proteomics, tran-
scriptomics, and genomics have significantly improved our un-
derstanding of bovine sperm resilience to cryogenic stress. The
identification of specific biomarkers, such as proteins, miRNAs,
and genetic SNPs, is revolutionizing the selection of high-quality
sperm for cryopreservation, thereby enhancing artificial insemi-
nation techniques.

Cryoprotectants

The primary aim of a cryopreservation protocol is to ensure the
viability of sperm cells, not only throughout the freezing process
but also post-thawing. Rehydration, osmotic stress, and plasma
membrane disruption are significant challenges sperm cells face
during thawing. To optimize sperm cryopreservation effectively,
it is crucial to focus on three key aspects: the selection of ap-
propriate cryoprotectants, controlling the cooling and freezing
rates, and managing the thawing rate. Cryoprotectants play a
vital role in reducing cryoinjury during both freezing and thaw-
ing processes. These substances are categorized based on their
ability to penetrate the sperm cell. There are permeating and
non-permeating types of cryoprotectants (Table 1).

Permeating cryoprotectants, which can infiltrate the sperm
cell membrane, alter the cytoplasm’s viscosity and reduce in-
tracellular electrolyte concentrations. This action helps in de-
hydrating the sperm cell during freezing, thereby diminishing
the formation of intracellular ice and lessening the degree of os-
motic shrinkage (Lovelock and Polge, 1954; Holt, 2000). Glyc-
erol is the most commonly used permeating cryoprotectant in
the cryopreservation of mammalian spermatozoa. Other sub-
stances like ethylene glycol and dimethylacetamide are also em-
ployed as penetrating cryoprotectants (Yeste et al., 2017). How-
ever, the penetrative nature of glycerol and similar cryoprotec-
tants can be relatively toxic to sperm cells. The tolerance to
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Table 1: Comparison between permeating and non-permeating cryoprotectants (Sathe 2021).

Aspect Permeating cryoprotectants Non-permeating cryoprotectants

Penetration Can penetrate the sperm cell membrane. Can not penetrate the sperm cell membrane.

Examples Glycerol, dimethyl sulfoxide (DMSO), ethylene

glycol.

Egg yolk, skim milk, sucrose, trehalose.

Mechanism of action Protect cells by replacing water inside the cell, pre-

venting intracellular ice formation.

Protect cells by creating an osmotic balance, re-

ducing extracellular ice.

Effect on sperm motility Can potentially affect motility due to intracellular

changes.

Less likely to affect motility as they do not pene-

trate the cell.

Membrane integrity Can alter membrane properties due to penetra-

tion.

Less disruptive to membrane integrity as they do

not enter the cell.

Toxicity Potential toxicity due to intracellular accumula-

tion.

Generally, have lower toxicity as they do not enter

the sperm cells.

Concentration Typically used in lower concentrations. Often used in higher concentrations to exert effect

externally.

Removal after thawing Require careful removal as they are inside the cells. Easier to remove as they are not inside the sperm

cells.

Effectiveness Highly effective in preventing intracellular ice for-

mation.

Effective in controlling extracellular ice formation

and osmotic stress.

glycerol concentrations varies across animal species due to dif-
ferences in sperm cell cytoplasm viscosity (Hammerstedt et al.,
1978), resulting in varied glycerol tolerances. For instance, se-
men from bulls and boars can tolerate higher glycerol concentra-
tions than that from stallions (Moore et al., 2006). On the other
hand, non-permeating cryoprotectants are those that do not en-
ter the sperm cell membrane. They function extracellularly by
stabilizing the plasma membrane and lowering the extracellular
compartment’s freezing point, consequently reducing the forma-
tion of ice crystals around the sperm cells (Hammerstedt et al.,
1990). This category includes sugars such as lactose, trehalose,
dextran, and proteins (Hezavehei et al., 2018). Animal-derived
proteins, like chicken egg yolk and fat-free skimmed milk, have
been widely used in the cryopreservation of sperm from various
animals. Nevertheless, there is a growing interest in utilizing
animal-free cryoprotectants to eliminate the risk of viral or other
disease transmissions.

Various extenders and additives (Table 2) have been utilized
to mitigate the cold shock impact on bovine sperm, aiming to
improve sperm quality and fertility rates post-thawing.

Commonly, chicken egg yolk is incorporated into bovine se-
men extenders at a concentration of 20%. The cryoprotective
efficacy of egg yolk is largely attributed to the presence of low-
density lipoproteins (LDL), which coat the sperm plasma mem-
brane and preserve its components during the freeze-thaw cycle
(Medeiros et al., 2002; Bergeron et al., 2004). It has been sug-
gested that proteins in seminal plasma when bound to sperm,
lead to destabilization of the cell wall. This destabilization is
caused by the efflux of cholesterol and phospholipids, rendering
the sperm more vulnerable to cold shock during freezing (Man-
junath et al., 1994; Thérien et al., 1998). LDLs play a role in
binding to seminal plasma proteins and reinforcing the sperm
plasma membrane, thereby increasing sperm cryotolerance dur-
ing freezing. As an alternative to egg yolk, milk-based cryopro-
tectants have been employed for bovine sperm cryopreservation.
The protective effect of these cryoprotectants is mainly due to
casein (Bergeron and Manjunath, 2006). Casein interacts with
seminal plasma proteins, preventing the loss of lipids from the
sperm plasma membrane (Bergeron and Manjunath, 2006).

The concerns regarding the use of animal-based products in
semen extenders have risen, primarily due to risks of bacterial or
xenobiotic contamination, presence of endotoxins, interference
with sperm evaluation, variability in egg yolk composition, and
potential compromise to the integrity of sperm cells (Layek et al.,
2016). Consequently, the development of animal protein-free me-
dia has been initiated (Aires et al., 2003). These concerns have
spurred interest in seeking alternatives to animal-based semen
cryoprotectants for the artificial insemination industry.

Plant-based cryoprotectants have emerged as an alternative
to milk and egg yolk-based extenders. For instance, soybean
lecithin has been used as a plant-based extender, providing ade-

quate protection for sperm during cryopreservation while reduc-
ing the risk of disease transmission. Comparisons between ani-
mal protein-based extenders (e.g., Triladyl, BullXcel, Laciphos)
and animal protein-free extenders (e.g., OptiXcell, AndroMed,
Biociphos plus) have been made. While in-vitro sperm parame-
ters showed some differences, the pregnancy rate and the 56-day
or 60-day non-return rates were not significantly different (van
Wagtendonk-de Leeuw et al., 2000; Aires et al., 2003; Muiño
et al., 2007; Murphy et al., 2013).

In the context of bull sperm freezing using protein-free ex-
tenders, it has been observed that the plasma membrane of
sperm cells loses cholesterol during freezing (Bailey et al., 2000).
Adding cholesterol to the freezing medium has enhanced post-
thawing sperm parameters (Purdy and Graham, 2004; Ma et al.,
2006). Recently, bull sperm was successfully cryopreserved with-
out the use of any animal or plant protein (Anzar et al., 2019).
This was achieved by treating bull semen with a cholesterol-
cyclodextrin complex (CC), followed by dilution in an extender
containing glycerol and tris salts (TG). The post-thaw sperm pa-
rameters were comparable to those frozen in exogenous protein-
based extenders, and the protein profile of fresh sperm was sim-
ilar to that of sperm frozen in CC+TG, suggesting the potential
of CC+TG as a promising extender (Anzar et al., 2019).

In bull sperm cryopreservation, the incorporation of
nanoparticles and nanovesicles (like liposomes and exosomes)
has been explored to assess their impact in reducing cryoin-
jury. Nanoparticles, derived from natural herbs or metals, func-
tion by reducing oxidative stress, decreasing cell apoptosis, and
enhancing plasma membrane integrity. Liposomes, which are
synthetic nanovesicles made of a spherical single lipid bilayer,
can be produced through sonication of lipid suspension (son-
icated liposome) (Graham and Foote, 1987) or by extrusion,
passing the lipid suspension through extruders with nano-sized
pores (extruded liposome) (Röpke et al., 2011). These liposomes
integrate into the sperm plasma membrane, helping to repair
damage caused by freezing and thawing. Exosomes, which are
nano-sized extracellular vesicles released from cells, can decrease
sperm cryoinjury by reducing ROS and lipid peroxidation during
the freeze-thaw process, delivering antioxidant enzymes, miRNA,
and mRNA (Jahanbin et al., 2015; Khalil et al., 2019; Mousavi
et al., 2019; Franchi et al., 2020; Saadeldin et al., 2020).

Another method of bull sperm cryopreservation is sperm en-
capsulation. This process involves creating a mixture of sperm
suspension and sodium alginate solution, which is then combined
with certain ions (such as barium ions) to form alginate gel beads
(Nebel et al., 1985). These beads are subsequently loaded into
semen straws, which are then subjected to freezing. This freezing
can be executed using programmable freezers or through tradi-
tional methods such as immersing in liquid nitrogen vapor using
Styrofoam boxes. Encapsulation of sperm offers enhanced pro-
tection during cryopreservation. Moreover, it facilitates a con-
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Table 2: Different types of cryoprotectants that have been used for bull sperm cryopreservation.
Penetrating cryoprotectants

Cryoprotectant Composition/nature Beneficial effect Concentration Reference

Glycerol A simple polyol compound Reduces ice crystal formation, sta-

bilizes cell membranes

2-12% Rasul et al. (2007);

Papa et al. (2015)

DMSO

(dimethyl sulfoxide)

An organosulfur compound

with a high polar nature

Penetrates cell membranes and re-

duces ice crystal formation

2-6% Snedeker and Gaunya

(1970); El-Harairy et al.

(2011)

Ethylene glycol Low molecular weight, an

organic compound used as

an antifreeze replacement for

glycerol

Lowers the freezing point, reduces

osmotic stress

3-7% Forero-Gonzalez et al.

(2012); Saberivand

et al. (2023)

Propylene glycol A synthetic organic com-

pound similar to ethylene gly-

col

Reduces ice crystal formation and

membrane damage

12% Seshoka et al. (2016)

Methanol Low molecular weight Sim-

ple alcohol, a replacement for

glycerol

Lowers freezing point and reduces

ice formation

1% Awad (2011)

Sorbitol Sugar alcohol Has a cryoprotective effect and re-

duces cell damage

1 g/L Verberckmoes et al.

(2004)

Non-penetrating cryoprotectants

Sodium citrate A salt of citric acid Acts as a buffer and has a mild cry-

oprotective effect

1.5-2.9% Cragle et al. (1955);

Pileckas et al. (2014)

Trehalose A disaccharide sugar

composed of two glucose

molecules

Stabilizes sperm membranes and

protects against dehydration

25-200 mM Hu et al. (2010); Öztürk

et al. (2017)

Sucrose A disaccharide sugar com-

posed of glucose and fructose

Acts as an osmoprotectant and

prevents cellular dehydration

0.1-0.5 M Chen et al. (1993);

Woelders et al. (1997)

Lactose A disaccharide sugar found in

milk

Helps in osmotic balance and pro-

tects against cellular dehydration

11.5% Pileckas et al. (2014)

Raffinose A trisaccharide sugar com-

posed of galactose, glucose,

and fructose

Cryoprotective and antioxidant

properties

25 mM Tuncer et al. (2011)

Polyethylene glycol

(PEG)

Synthetic polymer, less toxic

than DMSO

Enhances sperm survival, reduces

ice formation

5% Abavisani et al. (2013)

Plant-based proteins and extracts

Soybean lecithin Phospholipid complex from

soybeans

Replaces egg yolk, reduces the risk

of disease transmission

1-5% Phillips and Spitzer

(1946); Aires et al.

(2003); Layek et al.

(2016)

Aloe vera extract Extract from Aloe vera plant Enhances membrane integrity, an-

tioxidative properties

0.25-1% Boonkong et al. (2019);

Singh et al. (2020)

Green tea extract

(catechin)

Extract from green tea leaves-

Polyphenolic compound

Acts as an antioxidant and pro-

tects sperm cells from damage

1.5, 5, 10, 25,

and 50 µg/mL

Înanç et al. (2019);

Susilowati et al. (2021)

Quercetin Flavonoid compound Acts as an antioxidant and en-

hances sperm motility

25, 50, 100 and

200 µg/mL

Tvrdá et al. (2016);

Avdatek et al. (2018)

Curcumin Bioactive compound from

turmeric

Acts as an antioxidant and pro-

tects sperm DNA

0.5 and 2 mM Bucak et al. (2012);

Salman et al. (2021)

Animal-based proteins

Egg yolk Emulsion of lipids and pro-

teins from eggs

Protects spermatozoa during

freezing and thawing

5-20% Thun et al. (2002);

Amirat et al. (2004)

Bovine serum albumin

(BSA)

Protein from bovine blood

serum

Stabilizes sperm membrane, pro-

vides antioxidant protection

0.5-6% De Leeuw et al. (1993);

Ashrafi et al. (2013)

Casein and sodium

caseinate

Protein derived from milk Improves sperm motility and via-

bility

2% Diniz et al. (2020)

Minerals

Zinc (nano form) Metallic element Improves sperm motility and an-

tioxidant activity

1-10 mM Jahanbin et al. (2021)

Selenium (nano form) Metallic element Protects spermatozoa from oxida-

tive damage

0.5-1.5 µg/ml Khalil et al. (2019)

Magnesium Metallic element Enhances sperm motility and via-

bility

0.5-1 mM Eidan et al. (2015)

Vitamins

Vitamin E Fat-soluble vitamin Protects spermatozoa from oxida-

tive stress

2 mg/mL Hu et al. (2011b)

Vitamin C (ascorbic acid) Water-soluble vitamin Acts as an antioxidant that im-

proves sperm quality

2.5 mM Eidan (2016)

Vitamin B12 Water-soluble vitamin Enhances sperm motility 2.5 mg/mL Hu et al. (2011a)

Antioxidants and other compounds

Melatonin Hormone Acts as an antioxidant and pro-

tects against oxidative damage

0.25– 0.1 mM ChaithraShree et al.

(2020)

Honey Natural substance Acts as an antioxidant and osmo-

protectant

2.5% Yimer et al. (2015)

Antifreeze proteins Protein Prevents ice recrystallization 0.1, 1, 10 and

100 µg/mL

Prathalingam et al.

(2006)
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Table 3: Different probes and stains used for flow cytometry analysis of bovine sperm.
Stain Category How it works Reference

Peanut agglutinin (PNA) Acrosome integrity Binds to acrosomal contents of the sperm, assessing

acrosome reaction and integrity.

Cross and Watson

(1994)

Concanavalin A (Con A) Acrosome status Binds to specific sugar residues on the acrosome, used

to evaluate acrosome integrity and reaction.

Jankovičová et al.

(2008)

FITC-Pisum sativum

agglutinin (FITC-PSA)

Acrosome status Binds specifically to the outer acrosomal membrane,

used to assess acrosome integrity and status.

Jankovičová et al.

(2008)

Alexa fluor phalloidin Actin filament visualiza-

tion

Binds to F-actin in sperm, allowing for the visualiza-

tion and study of cytoskeletal structures.

Rajamanickam et al.

(2017)

Annexin V Apoptosis Binds to phosphatidylserine, which translocates to the

outer leaflet of the plasma membrane during apopto-

sis.

Dogan et al. (2013)

Oregon Green 488 BAPTA-1

AM

Calcium binding A calcium indicator is used for measuring changes in

intracellular calcium concentrations.

Qin (2008)

Fura-2 Calcium concentration A fluorescent dye is used for measuring intracellular

calcium levels, which is important for sperm motility

and capacitation processes.

Dragileva et al. (1999)

Fluo-4 AM Calcium Ion concentra-

tion

A fluorescent dye is used for detecting changes in intra-

cellular calcium levels, which is important for sperm

motility and function.

Bucher et al. (2019)

Nonyl acridine orange Cardiolipin Binds to cardiolipin, a component of mitochondrial

membranes, useful in assessing mitochondrial health.

Uğuz et al. (2014)

CellTracker Green CMFDA Cellular function Stains live cells, allowing assessment of cellular func-

tion and viability over time.

Puglisi et al. (2010)

Bodipy FL C5-ceramide Ceramide content Used for labeling ceramides, offering insights into cell

membrane composition and health.

Moreno et al. (2000)

Ethidium homodimer-1,

homodimer-2 and bromide

Dead cells/ DNA dam-

age

Penetrates cells with damaged membranes, used for

identifying dead or damaged sperm cells.

Garćıa-Herreros and

Leal (2014)

SYTOX (blue, gold, green,

and orange)

Dead cells (Viability) Penetrates only cells with compromised membranes.

Have a high affinity for nucleic acid. Useful for distin-

guishing between viable and non-viable sperm cells.

Moya et al. (2022)

DRAQ5 DNA Deep red fluorescent dye that binds to DNA allows for

detailed analysis of nuclear morphology and DNA con-

tent.

Lamy et al. (2017)

SYBR Green I DNA Binds to DNA, providing a more sensitive alternative

to other DNA dyes for assessing DNA content and in-

tegrity.

Garćıa-Herreros and

Leal (2014)

Acridine orange

(different concentrations)

DNA and RNA At different concentrations, it can be used to differen-

tiate between DNA and RNA, providing insights into

nucleic acid content.

Andraszek et al. (2014)

Hoechst 34580 DNA content Similar to Hoechst 33342 and 33258, it’s used for stain-

ing DNA to assess the content and integrity of sperm

nuclei.

Kumar et al. (2017)

Hoechst 33258 DNA content and In-

tegrity

Binds to DNA, allowing for the assessment of DNA

content and integrity in sperm nuclei.

Kumar et al. (2017)

Hoechst 33342 Viability and DNA in-

tegrity

Stains live spermatozoa and allow for assessment of

DNA integrity and sperm viability.

Hallap et al. (2006);

Duran and

Hufana-Duran (2017)

TUNEL assay (terminal

deoxynucleotidyl transferase

dUTP nick end labeling)

DNA fragmentation Detects fragmented DNA, a marker of apoptosis or se-

vere DNA damage in sperm.

Takeda et al. (2015)

Acridine orange DNA integrity and dam-

age

Fluorescent dye is used to assess DNA integrity and

damage in sperm.

Andraszek et al. (2014)

PI/YOYO-1 combination DNA integrity and via-

bility

YOYO-1 is a potent nucleic acid stain used with PI to

evaluate both DNA integrity and cell viability.

Duran and

Hufana-Duran (2017)

Chromomycin A3 DNA packaging Binds to G-C-rich regions of DNA, used to assess DNA

packaging and integrity in sperm.

Simões et al. (2009)

Bromodeoxyuridine (BrdU) DNA synthesis Used to measure DNA synthesis, indicating spermato-

genesis activity and DNA replication.

Anzar et al. (2002)

Rhodamine-phalloidin F-actin Specifically binds to F-actin, useful for studying sperm

cytoskeleton and morphological integrity.

Flaherty et al. (1986)

Calcein blue General cell viability A fluorescent dye is used for assessing general cell vi-

ability, giving a quick assessment of sperm health.

Bucher et al. (2019)

Calcein violet 450 AM General cell viability A cell-permeant dye that emits violet fluorescence

when hydrolyzed is used for assessing general cell via-

bility.

Bucher et al. (2019)

BCECF AM (2’,7’-Bis-

(2-carboxyethyl)-5-(and-

6)-carboxyfluorescein,

ecetoxymethyl Ester)

Intracellular pH A fluorescent dye used to measure intracellular pH is

important for understanding sperm physiology.

Vredenburgh-Wilberg

and Parrish (1995)
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Table 3: Continued

Stain Category How it works Reference

SNARF-5F AM Intracellular pH A fluorescent dye used to measure intracellular pH is

important in sperm physiology and capacitation pro-

cesses.

Chávez et al. (2019)

BODIPY 581/591 C11 Lipid peroxidation Sensitive to changes in lipid peroxidation, indicative

of oxidative stress and membrane damage in sperm.

Brouwers and

Gadella (2003)

LysoSensor green DND-189 Lysosomal activity A fluorescent dye that accumulates in lysosomes, al-

lowing for the assessment of lysosomal activity in

sperm cells.

Jones et al. (2013)

LysoTracker Lysosomal activity Fluorescent dye is used for labeling and tracking lyso-

somal activity within cells, indicating cellular health

and functionality.

Thomas et al. (1997)

Merocyanine 540 Membrane fluidity Assesses the fluidity and stability of the sperm plasma

membrane, indicative of sperm functionality.

Hallap et al. (2006)

M540 Bodipy Membrane fluidity and

integrity

Used to assess sperm membrane fluidity and integrity,

crucial for sperm functionality.

Bernecic et al.

(2019)

Carboxyfluorescein diacetate Membrane integrity Measures membrane integrity, as it can only enter cells

with compromised membranes.

Garner et al. (1986)

PKH26 Membrane labeling A fluorescent cell linker for long-term membrane label-

ing, useful for tracking sperm in studies of fertilization

and motility.

Pagano et al. (2020)

DiBAC4(3)

(Bis-(1,3-dibutyl barbituric acid)

trimethylene Oxonol)

Membrane potential A voltage-sensitive dye used to assess changes in mem-

brane potential is important for sperm function.

Thundathil et al.

(2006)

DiOC2(3)

(3,3’-diethyloxacarbocyanine

iodide)

Membrane potential A lipophilic dye is used for assessing membrane poten-

tial relevant to sperm function and vitality.

Nascimento (2008)

DiOC6(3)

(3,3’-dihexyloxacarbocyanine

iodide)

Membrane potential Used for assessing membrane potential, crucial for

sperm function and viability.

Varela et al. (2020)

Potentiometric membrane dyes

(e.g., TMRE, TMRM, JC-1)

Membrane potential A group of dyes used for assessing mitochondrial mem-

brane potential, crucial for mitochondrial health and

function in sperm.

Garner and Thomas

(1999); Treulen et al.

(2018); Maulana and

Kaiin (2023)

MitoTracker Mitochondrial activity Selectively stains mitochondria in live cells and is used

to assess mitochondrial activity and health.

Garner et al. (1997)

Rhodamine 123 Mitochondrial function/

mitochondrial mem-

brane potential

Stains active mitochondria, used to assess mitochon-

drial functionality and health.

Celeghini et al.

(2007)

MitoSOX red Mitochondrial reactive

oxygen species (ROS)

Selectively target mitochondria to measure the pro-

duction of reactive oxygen species, indicating oxida-

tive stress.

Blanco-Prieto et al.

(2023)

Quantum dots Multiple targets (de-

pending on conjugation)

Nanocrystals that can be conjugated with various

molecules to study different aspects of sperm biology.

Sutovsky and

Kennedy (2013)

DAF-FM diacetate

diaminofluorescein

diacetate

Nitric oxide (NO) pro-

duction

Used for detecting nitric oxide production in cells,

providing insights into cellular signaling processes in

sperm.

Mart́ınez-Pastor

et al. (2010)

Aniline blue Nuclear maturation Stains immature sperm nuclei, indicating issues in nu-

clear maturation.

Alfadel et al. (2023)

DAPI

(4’,6-diamidino-2-phenylindole)

Nucleic acid staining Binds strongly to DNA, used for staining the nuclei

and assessing DNA content and integrity.

Komsky-Elbaz and

Roth (2018)

LDS-751 Nucleic acids A fluorescent dye that binds to nucleic acid is useful

for evaluating sperm cell viability and nucleic acid con-

tent.

Botta et al. (2019)

SYTO (green or red) Nucleic acids A green-fluorescent nucleic acid stain that is used for

assessing nucleic acid content and integrity in sperm.

Thomas et al.

(1997); Birck et al.

(2010)

TO-PRO-3 iodide Nucleic acids A DNA stain that is useful for discriminating between

live and dead sperm cells based on nucleic acid in-

tegrity.

Grundler et al.

(2004)

DCFDA

(2’,7’-dichlorofluorescein

diacetate)

Oxidative stress Measures reactive oxygen species (ROS) production,

indicating oxidative stress levels in sperm.

Okano et al. (2019)

SNARF-1 pH indicator Used to measure intracellular pH, an important pa-

rameter in sperm maturation and function.

Ballester et al.

(2007)

Fast green FCF Protein content Stains protein-rich structures within sperm, useful in

assessing protein content and distribution.

Way et al. (1995)

Fluorescein isothiocyanate

(FITC)

Protein localization and

function

Used to label proteins and assess their localization and

function within sperm cells.

Thomas et al. (1997)

DCFH-DA

(2’,7’-dichlorofluorescein

diacetate)

ROS A cell-permeable probe that is oxidized by ROS, form-

ing a fluorescent compound, is useful for studying ox-

idative stress.

Gürler et al. (2016)

DHR (dihydrorhodamine) ROS Converts to rhodamine 123 in the presence of ROS,

useful for assessing oxidative stress in sperm.

Gürler et al. (2016)

15
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Stain Category How it works Reference

Hydroethidine

(dihydroethidium)

ROS Oxidized by ROS to ethidium, which binds to DNA, al-

lowing for the assessment of oxidative stress in sperm

cells.

Mostek et al. (2017)

H2DCFDA

(2’,7’-

dichlorodihydrofluorescein

diacetate)

ROS detection Measures the production of ROS, providing insights into

oxidative stress levels in sperm.

Murphy et al. (2013)

Monobromobimane Thiol groups Reacts with thiol groups, particularly glutathione, in-

dicative of cellular redox state and health.

Salman et al. (2023)

ThiolTracker violet Thiol groups A fluorescent probe that specifically labels thiol groups,

indicating cellular redox state and protein status.

Rocha-Frigoni et al.

(2016)

7-Aminoactinomycin D

(7-AAD)

Viability Identifies non-viable cells by intercalating into double-

stranded DNA.

Varela et al. (2020)

Propidium iodide (PI) Viability Penetrates only dead or membrane-compromised sperm,

indicating non-viable sperm.

Garner et al. (1994)

SYBR-14 Viability Combines with PI for live/dead distinction. Stains live

sperm nuclei bright green.

Garner et al. (1994)

YO-PRO-1 Viability and mem-

brane Integrity

Penetrates only the membranes of apoptotic or dead

cells, used in conjunction with PI for viability assess-

ment.

Hallap et al. (2006)

FluoZin-3 AM Zinc ion concentra-

tion

A zinc-sensitive dye is used for detecting intracellular

zinc levels, which are important in sperm metabolism

and function.

Zoca et al. (2023)

trolled release of sperm from the alginate gel beads, potentially
leading to improved conception rates. Studies have shown that
pregnancy rates achieved with encapsulated cryopreserved sperm
are comparable to those obtained with conventionally cryopre-
served sperm (Nebel et al., 1993; Perteghella et al., 2017). The
technique of encapsulating bovine spermatozoa in alginate shows
promise in enhancing the release and survival of sperm within
the uterus, thereby prolonging its viability. Nonetheless, further
refinement and optimization of this technology are required for
its practical application in the field.

Choosing bovine sperm before freezing is a more effective
strategy than selecting bulls based on their ability to withstand
freezing. This approach minimizes the risk of inadvertently fa-
voring unwanted traits in the gene pool. Methods for collect-
ing competent bovine sperm include sperm migration (such as
swimming-up), sperm filtration (like using Sephadex beads), and
colloid centrifugation (for example, single layer centrifugation)
(Januskauskas et al., 2005; Morrell and Rodriguez-Martinez,
2011; Salman et al., 2023). A newer technique involves using
rheotaxis and thermotaxis (Nagata et al., 2019). This process
involves incubating the sperm in a fluid that rotates slowly (rheo-
taxis) and has a temperature gradient from 25°C at the bottom
to 30°C at the top (thermotaxis). The motile, viable sperm mi-
grate to the warmer upper layers, where they can be collected.
This method has shown significant improvements in sperm qual-
ity post-thaw compared to controls (Nagata et al., 2019). An-
other study explores the potential of a centrifuge-free commercial
device called MIGLIS® for selecting high-quality frozen-thawed
bovine sperm. The MIGLIS method shows promise in improv-
ing sperm quality (motility, viability, and acrosome integrity
rates) and reducing ROS concentrations compared to conven-
tional centrifugation-based techniques. Moreover, the blasto-
cyst formation rates were similar, while the intracellular ROS
concentrations of embryos fertilized with spermatozoa were se-
lected using the MIGLIS method compared with conventional
centrifugation-based techniques (Nguyen et al., 2024).

Current status and advancement in bull semen analysis

The field of bovine andrology has faced challenges in accurately
analyzing sperm motion and morphology. Traditional methods
like bright-field and differential interference contrast (DIC) mi-
croscopy are subjective, lack precision, and are limited in provid-
ing detailed, quantitative data about spermatozoa. The need for
an objective, automated system to analyze sperm effectively was
paramount for advancements in reproductive medicine, research,
and clinical practice.

The solution to this problem was the development and re-
finement of computer-assisted sperm analysis (CASA) systems.
These systems represent a significant technological advancement
over traditional sperm analysis methods, offering automated,

precise, and objective data. Early CASA systems required sig-
nificant manual input and were less efficient. Modern systems
integrate advanced imaging technologies and software for more
detailed and automated analysis. While CASA systems provide
more accurate and precise data than manual analysis, they have
limitations in predicting male fertility due to the complex na-
ture of sperm attributes and fertilization processes (Amann and
Katz, 2004). For example, CASA does not adequately consider
the complex flagellar waveforms of spermatozoa, hindering the
understanding of cell motility. Therefore, high-fidelity computer-
assisted beat-pattern analysis (CABA) was introduced as a sta-
tistical approach to distinguish between samples based on com-
plex flagellar beating patterns (Walker et al., 2020).

Flow cytometry is widely used in bull sperm analysis for as-
sessing sperm integrity and functionality. Benchtop flow cytome-
ters and versatile markers allow for measuring various sperm pa-
rameters, from viability to reactivity to external stimuli. Flow
cytometry aids in sorting sperm for potential fertilization and de-
termining chromosomal sex. It has applications in sperm freez-
ing, sperm selection, and sperm sorting. Routine spermiogram
evaluations are suitable for identifying infertility but not for pre-
dicting fertility levels (Hossain et al., 2011). Flow cytometry
provides objective and repeatable analyses of sperm, even with
small sample sizes (DeJarnette et al., 2022). Flow cytometry is
used to enumerate the total sperm count per ejaculate or straw
accurately.

Different fluorescent probes like SYBR-14/propidium iodide
(PI) are used to assess viability and membrane integrity. Flow
cytometry can also evaluate membrane permeability, stability,
early changes, and acrosome integrity using various probes (Ta-
ble 3). However, Labeling cells for evaluation can alter the shape
and size of the spermatozoa. Moreover, stepwise regression mod-
els indicated that including multiple semen quality attributes like
CASA at 0 and 3 h, flow cytometry viability, and DNA Integrity
did not significantly increase the predictive power of semen qual-
ity (DeJarnette et al., 2022). The inclusion of multiple semen
quality attributes explained only about 3% of the total variance
in sire conception rate (SCR) fertility deviations, which means a
limited correlation between semen quality and fertility was found
(DeJarnette et al., 2022). Therefore, a multidisciplinary collab-
oration like digital holography, super-resolution microscopy, and
next-generation sequencing (NGS), artificial intelligence (AI) is
crucial for further progress in improving sperm and genetics
analysis and improved access to point-of-care assays (Dai et al.,
2021). These new promising techniques for sperm evaluation can
be adopted for more accurate bull sperm analysis.

The study of bull sperm cells’ morphology is traditionally
conducted using optical microscopy. Traditional optical mi-
croscopy uses X- and Y-plan; therefore, it is not enough to pro-
vide a detailed analysis of the sperm cells. Obtaining a com-
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prehensive view necessitates a meticulous z-axis scanning of the
biological specimen to gather various focal planes, which are
subsequently processed to construct a three-dimensional (3D)
representation of the subject being examined. Atomic force
microscopy (AFM) offers more in-depth morphological details.
AFM operates by scanning a surface with a fine-tipped probe to
map out the surface’s topography at a nanometric scale, thereby
providing a highly detailed morphological image (Allen et al.,
1996; Saeki et al., 2005; Carvalho et al., 2013). However, despite
its precision, AFM is not widely adopted in the animal produc-
tion industry. This is primarily due to the intricate preparation
required for the samples and the significant costs associated with
AFM equipment, making it less feasible for widespread use (Fer-
rara et al., 2015).

Holography emerges as a cutting-edge method for non-
invasive, quantitative examination of cells and tissues, eliminat-
ing the need for staining or labeling. Specifically, digital holog-
raphy (DH) has proven effective in analyzing the morphology of
bovine sperm cells. A notable aspect of DH is its ability to gen-
erate a 3D image from a single captured hologram, bypassing
any mechanical scanning (Di Caprio et al., 2010). This tech-
nique significantly enhances the ability to handle quantitative
data and perform various numerical analyses. Such capabilities
are crucial in exploring the relationship between atypical sperm
morphology and male infertility (Ferrara et al., 2015).

A full label-free analysis of bovine sperm cells using a novel
experimental setup that integrates DH microscopy and Ra-
man spectroscopy (RS) (Ferrara et al., 2015; De Angelis et al.,
2017). DH microscopy provided high-resolution images and
quantitative 3D reconstructions of sperm heads, identifying mor-
phological irregularities, including a notable ”protuberance” in
the post-acrosomal region. Raman imaging further confirmed
this anomaly, attributing it to protein vibrations, possibly re-
lated to centrioles in the region connecting the sperm tail and
head. Additionally, this setup distinguished between X and Y-
chromosome-bearing sperm cells, although physical parameters
like head size and volume were not definitive indicators. RS’s
non-invasive detection of DNA content and plasma-membrane
proteins proved more effective, achieving over 90% accuracy in
identifying the sperm chromosome (Ferrara et al., 2015).

A partially spatially coherent digital holographic microscope
(PSC-DHM) was developed to provide quantitative phase imag-
ing (QPI) and distinguish normal vs stressed sperm cells based
on nanoscale morphology changes. Sperm cell motility and mor-
phology under bright field microscopy are currently the main
criteria used to evaluate sperm. However, factors such as ox-
idative stress, cryotolerance, and heat can negatively affect the
quality of sperm cells and their potential to fertilize by altering
subcellular structures that are not visible under bright field mi-
croscopy. Therefore, the PSC-DHM system was developed to dis-
tinguish differences between normal sperm cells and cells under
stressed conditions. Phase maps were reconstructed for a total
of 10,163 sperm cells acquired from the PSC-DHM system (2,400
control cells, 2,750 cryopreserved cells, 2,515 oxidative stressed
cells, and 2,498 ethanol-affected cells). Seven deep neural net-
works (DNNs) were employed to classify the phase maps into
normal vs stressed sperm cell categories. When validated on the
test dataset, the DNNs provided an average sensitivity of 85.5%,
specificity of 94.7%, and accuracy of 85.6%. The QPI + DNN
framework demonstrates the potential for improving diagnostic
efficiency in semen analysis regarding fertilization potential (Bu-
tola et al., 2020).

Another recent technique for sperm analysis is stochastic
optical reconstruction microscopy (N-STORM). N-STORM is a
super-resolution microscopy technique that can achieve spatial
resolutions of up to 10 nanometers. This level of resolution allows
for the visualization of subcellular structures, such as centrioles,
in much finer detail. N-STORM allows researchers to capture
the position of both the sperm head and tail at the microscale
and centriolar substructure details at the nanoscale. N-STORM
enables the analysis of individual sperm cells, providing insights
into the dynamic movement of structures within the sperm neck
during tail-beating cycles. N-STORM has been crucial in identi-
fying and studying atypical centrioles and the process of centriole
remodeling during spermatogenesis (Royfman et al., 2024).

High-resolution 4-D imaging of sperm was developed recently

for imaging of freely swimming human sperm cells without the
need for staining. The problem addressed is the limitations of
current imaging techniques in assessing the 3-D morphology and
dynamics of sperm cells, which impacts both biological assays
and clinical use. The method captures the 3-D morphology of
the sperm head, including internal organelles, and the dynamic
motion of the flagellum (Dardikman-Yoffe et al., 2020).

Conclusion

Despite the advancements in traditional semen analysis meth-
ods, they still show limited predictive power for semen quality
and fertility. Therefore, multidisciplinary approaches integrat-
ing advanced techniques like digital holography, super-resolution
microscopy, and artificial intelligence are crucial for progress in
sperm and genetics analysis. Innovative methods like digital
holography (DH) and Raman spectroscopy (RS), partially spa-
tially coherent digital holographic microscope (PSC-DHM), and
stochastic optical reconstruction microscopy (N-STORM) have
shown potential in providing more accurate and comprehensive
sperm evaluation. The adoption of these advanced techniques for
a more detailed analysis of bull sperm is vital for understanding
fertility and improving cryopreservation methods.
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R., Taşdemir, U., 2018. Supplementation of quercetin for ad-

vanced DNA integrity in bull semen cryopreservation. Andrologia

50, e12975. 10.1111/and.12975.

Awad, M.M., 2011. Effect of some permeating cryoprotectants on

CASA motility results in cryopreserved bull spermatozoa. Ani-

mal Reproduction Science 123, 157–162. 10.1016/j.anireprosci.

2011.01.003.

Bailey, J., Morrier, A., Cormier, N., 2003. Semen cryopreservation:

Successes and persistent problems in farm species. Canadian Jour-

nal of Animal Science 83, 393–401.

Bailey, J.L., Bilodeau, J.F., Cormier, N., 2000. Semen cryopreser-

vation in domestic animals: A damaging and capacitating phe-

nomenon. Journal of Andrology 21, 1–7. URL: https://www.

ncbi.nlm.nih.gov/pubmed/10670514.

Ballester, J., Johannisson, A., Saravia, F., H̊åard, M., Gustafsson,
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